
Explaining Synthesized Software

Jeffrey Van Baalen, Peter Robinson*,
Michael Lowry, Thomas Pressburger*

NASA Ames Research Center
M.S. 269-2, Code IC

Moffett Field, CA 94035

{jvb,lowry,robinson,ttp}@ptolemy.arc.nasa.gov

http://ic-www.arc.nasa.gov/ic/projects/amphion/docs/amphion.html

* Recom Technologies, Inc.

Abstract

Motivated by NASA’s need for high-assurance soft-
ware, NASA Ames' Amphion project has developed a ge-
neric program generation system based on deductive syn-
thesis. Amphion has a number of advantages, such as the
ability to develop a new synthesis system simply by writing a
declarative domain theory. However, as a practical matter,
the validation of the domain theory for such a system is
problematic because the link between generated programs
and the domain theory is complex. As a result, when gener-
ated programs do not behave as expected, it is difficult to
isolate the cause, whether it be an incorrect problem speci-
fication or an error in the domain theory.

This paper describes a tool we are developing that pro-
vides formal traceability between specifications and gener-
ated code for deductive synthesis systems. It is based on
extensive instrumentation of the refutation-based theorem
prover used to synthesize programs. It takes augmented
proof structures and abstracts them to provide explanations
of the relation between a specification, a domain theory,
and synthesized code. In generating these explanations, the
tool exploits the structure of Amphion domain theories, so
the end user is not confronted with the intricacies of raw
proof traces.

This tool is crucial for the validation of domain theories
as well as being important in every-day use of the code
synthesis system. It plays an important role in validation
because when generated programs exhibit incorrect behav-
ior, it provides the links that can be traced to identify errors
in specifications or domain theory. It plays an important
role in the every-day use of the synthesis system by ex-
plaining to users what parts of a specification or of the do-
main theory contribute to what pieces of a generated pro-
gram. Comments are inserted into the synthesized code that
document these explanations.

Introduction

The Amphion project in the Automated Software Engi-
neering group at NASA Ames Research Center is investi-
gating technology to support the development of high-
assurance software. Amphion/NAIF [7, 5] is a domain-
specific, high-assurance software synthesis system based on
a specialization of the generic Amphion architecture. Am-
phion/NAIF takes an abstract specification of a problem in
solar system observation geometry, such as “when will a
signal sent from the Cassini spacecraft to Earth be blocked
by the planet Saturn?”, and automatically synthesizes a
Fortran program to solve it.

Amphion greatly facilitates reuse of domain-oriented
software libraries by enabling a user to state a problem in an
abstract, domain-oriented vocabulary. The programs gener-
ated by Amphion/NAIF consist of assignment statements
and calls to components from the SPICELIB software li-
brary in the NAIF toolkit. It takes significantly less time for
an experienced user to develop a problem specification with
Amphion than to manually generate and debug a program.
More importantly, a novice user does not need to learn the
details of the components in the library before using Am-
phion to create useful programs. This removes a significant
barrier to the use of software libraries.

Amphion uses deductive synthesis in which programs
are synthesized as a byproduct of theorem proving from an
application domain theory, such as the domain of solar sys-
tem observation geometry. In this paradigm, problem speci-
fications are of the form ∀ ∃v v v v

x y P x y[(,)], where
v
x and

v
y

are vectors of variables. The theorem prover generates con-
structive proofs in which witnesses have been produced for
each of the variables in

v
y . Amphion/NAIF demonstrates

that, using deductive synthesis, it is possible to create do-

main-specific systems that enable users to generate high-
assurance software cost-effectively.

Deductive synthesis has several potential advantages
over competing synthesis technologies. The first is the well-
known but unrealized promise that developing a declarative
domain theory costs less than developing a special-purpose
synthesis engine through ad-hoc techniques. The second
advantage is that synthesized programs are correct relative
to a domain theory and the component library. The third
advantage is that this relative correctness is rigorously
documented in a verification proof, thereby potentially pro-
viding more understandable and readable code than even the
best documented manually developed code. This latter po-
tential advantage is considerable, as state-of-the-practice
code generators produce programs that are unfit for human
consumption or human maintenance. This potential of de-
ductive synthesis has not been realized because raw, me-
chanically-generated proofs are also unfit for human con-
sumption, and can only be understood through a laborious
process by experts in theorem-proving technology.

This paper describes a tool we have developed (and
have nearly finished implementation as of May 1998) to
provide explanations of programs generated by Amphion. It
will first be used to automatically insert comments into gen-
erated code that document the relation between program
variables and parts of the specification and domain theory. It
will then be used to provide a dynamic web-browsable ex-

planation of all aspects of generated code, enabling a user
to probe the rationale for a generated program in terms of
the domain theory. Based on our past experience in validat-
ing and debugging Amphion domain theories, this facility is
expected to enable domain experts to home in on parts of a
domain theory that lead to faulty programs. This is part of
the larger goal of the Meta-Amphion project: enabling do-
main experts to construct, validate, and maintain their own
high-assurance software synthesis systems.

The next section of this paper introduces the explana-
tion tool through a simple example from the NAIF domain.
Section 3 then provides an overview of the Amphion de-
ductive synthesis system, sufficient to understand the tech-
nical development in the rest of the paper, illustrated with
this same example. Section 4 then illustrates the mechanics
of generating an explanation. Section 5 develops the
mathematical framework for generating explanations. Sec-
tion 6 describes our tracing algorithms. Section 7 then re-
lates this work to previous work and discusses future work.

Introduction to the Explanation Tool

We illustrate the need for an explanation tool with the
following example. Figure 1 shows a simple specification
given to the Amphion/NAIF system.

Figure 1: A simple specification for Amphion/NAIF

This specification depicts the constraints on a program
that takes a time as input and produces as output the dis-

tance between the center of Earth and the center of Mars at
that time. In general, specifications are given at an abstract

level and programs are generated at a concrete level (in-
put/output parameters are exceptions to this). Abstract ob-
jects are free from implementation details; thus, a point is an
abstract concept, while a Fortran array of three real numbers
is a concrete, implementation-level construct. The concrete
array may represent the point, in which case this representa-
tion must be further specified by a coordinate system and
the origin and orientation of the coordinate axes.

The input in Figure 1(UTCIN in the upper left of the
diagram) is depicted by a chevron with an arrow pointing
into it. This chevron is connected to two other objects,
Time-of-Interest and UTC-Calendar. Time-of-Interest is an
abstract time, that is, an object representing the concept of a
particular time. UTC-Calendar is a concrete time system.
The arrows indicate that the abstract Time-of-Interest is rep-
resented in a program by a data object, UTCIN, which is
interpreted as a time coordinate in UTC-Calendar format.
Body-Earth and Body-Mars are abstract objects; each repre-
sents the state (space-time location and orientation) of its
respective planet at the given time. Hence, Body-Earth is
constrained to be the state of the planet with the name Earth
at Time-of-Interest. The variable Distance-Earth-Mars is the
abstract distance between the centers of the two bodies. Fi-
nally, the output EMDIST (the chevron in the lower right of
the diagram) is the concrete representation of the abstract
distance in kilometers.1Amphion/NAIF will generate the
program shown in Figure 2 from this specification:2

SUBROUTINE EARTH0 (UTCIN, EMDIST)
 IMPLICIT NONE
 DOUBLE PRECISION SLOC(3)
C Code for EARTH-MARS-DISTANCE
C Request-id: REQ-1998-04-06-14-58-47-423
C Parameters
C MARSNA is Mars-NAIF-ID
 INTEGER MARSNA
 PARAMETER (MARSNA = 499)
C EARTHN is Earth-NAIF-ID
 INTEGER EARTHN
 PARAMETER (EARTHN = 399)
C Input variables
 CHARACTER*(*) UTCIN
C Output variables
 DOUBLE PRECISION EMDIST
C Functions
 DOUBLE PRECISION VDIST
 LOGICAL RETURN
C Local variables
 DOUBLE PRECISION E
 DOUBLE PRECISION SMARS (6)

1 This version of the domain theory only has one representation for dis-

tances, namely kilometers. Thus this concrete object is not parameter-
ized.

2 Amphion/NAIF also generates a driver main program for this subroutine,
but in the interest of simplifying the presentation, this is not shown here.

 DOUBLE PRECISION SEARTH (6)
 DOUBLE PRECISION PSMARS (3)
 DOUBLE PRECISION PSEART (3)
C Error handling
 IF (RETURN()) THEN
 RETURN
 ELSE
 CALL CHKIN ('EARTH0')
 END IF

 CALL UTC2ET(UTCIN,E)
 CALL
 SPKSSB(EARTHN,E,'J2000',SEARTH)
 CALL
 SPKSSB(MARSNA,E,'J2000',SMARS)
 CALL ST2POS(SEARTH,PSEART)
 CALL ST2POS(SMARS,PSMARS)
 EMDIST = VDIST(PSEART,PSMARS)

 CALL CHKOUT ('EARTH0')
 RETURN
 END

Figure 2: Resulting Fortran program

It is difficult for the developers of Amphion/NAIF, let
alone space scientist users that are not familiar with the
component library, to understand the relationship between
this program and the specification given above - and this is
an extremely simple example. As the complexity of specifi-
cations increases, it becomes increasingly difficult to under-
stand this relationship. The goal of the tracing tool is to
make this relationship explicit.

The actual computation performed in this example con-
sists of the sequence of subroutine and function calls that
are shown in bold font. A good way to explain the links
from this program to the specification is to explain the rela-
tionship between the Fortran variables and the variables in
the specification. Our tool automatically inserts comments
that provide this explanation. In doing so, the tool exploits
the structure of Amphion domain theories, so the end user is
not confronted with the intricacies of raw proof traces. For
the program in Figure 2, the following comments are in-
serted before the sequence of calls:

C E represents Time-of-Interest in the ephe-
C meris time system
C SEARTH is an intermediate value used in
C computing the-center-of-Body-Earth
C SMARS is an intermediate value used in
C computing the-center-of-Body-Mars
C PSEART represents the-center-of-Body-
C Earth in rectangular coordinates J2000 at
C Time-of-Interest
C PSMARS represents the-center-of-Body-

C Mars in rectangular coordinates J2000 at
C Time-of-Interest
C EMDIST is Distance-Earth-Mars in kilome-
C ters

The Amphion Deductive Synthesis System

This section describes the components of our deductive
synthesis system in sufficient detail to motivate the imple-

mentation of the tracing tool. A more detailed treatment of
the system can be found in [5, 7].

Amphion consists of three subsystems: a specification
acquisition subsystem; a program synthesis subsystem; and
a domain-specific subsystem. Figure 3 presents a flow dia-
gram of the system, where the dotted lines enclose subsys-
tems, the rectangles enclose major components, and the
ovals enclose data.

Domain
Theory

Interface
Compiler

Theorem
Prover

Translator

code

subroutine
library

GUI
Spec
Editor

User

formal
Specification

proof

Domain Specific Specification Acquisition

Program Synthesis

Figure 3: Amphion Block Diagram

1.1 Specification Acquisition

The specification acquisition system includes a graphi-
cal user interface that enables a user to interactively build a
diagram representing a formal problem specification in first-
order logic. A graphical specification is automatically con-
verted into a formula to be proved. Thus, the graphical
specification diagrams are equivalent to specifications (in
first-order logic) of the following form:

lambda (inputs)
 find (outputs)
 exists (intermediates)
 conjunct1 &...& conjunctN
The input variables of the specification (bound by the

lambda) are universally quantified, while the output vari-
ables (bound by the find) are existentially quantified within
the scope of the input variables. The intermediates (bound
by exists) are also existentially quantified within the scope
of the input variables. The conjuncts are all expressed in the
abstract specification language, except for conjuncts ex-
pressing the relationships between concrete input or output
variables and the abstract variables they represent. The first-
order form of the specification depicted in Figure 1 is given
in Figure 4.

(LAMBDA (UTCIN)
 (FIND (EMDIST)
 (EXISTS
 (Time-of-Interest Body-Earth Body-Mars
 the-center-of-Body-Earth
 the-center-of-Body-Mars
 Distance-Earth-Mars)
 (AND
 (= Body-Earth
 (BODY-ID-AND-TIME-TO-BODY
 Earth Time-of-Interest))
 (= Body-Mars
 (BODY-ID-AND-TIME-TO-BODY
 Mars Time-of-Interest))
 (= the-center-of-Body-Earth
 (BODY-TO-CENTER Body-Earth))
 (= the-center-of-Body-Mars
 (BODY-TO-CENTER Body-Mars))
 (= Distance-Earth-Mars
 (TWO-POINTS-TO-DISTANCE
 the-center-of-Body-Earth
 the-center-of-Body-Mars))
 (= Time-of-Interest

 (abs (coordinates-to-time UTC-Calendar)
 UTCIN))
 (= EMDIST
 (UIREPN-KILOMETERS-TO-DISTANCE
 Distance-Earth-Mars))))))

Figure 4: Formal Specification of the Earth-Mars-

Distance problem

1.2 Program Synthesis

The program synthesis subsystem consists of a program
generator (theorem prover) and a translator that generates
code in the syntax of the target programming language. A
functional (applicative) program is generated through de-
ductive synthesis [4]. Amphion/NAIF uses the SNARK
refutation-based theorem prover [7] to generate a proof that
the specification is a theorem of the domain theory. SNARK
has inference rules for binary resolution, paramodulation,
and demodulation. The proof cycle consists of one applica-
tion of either binary resolution or paramodulation followed
by an arbitrary number of demodulations of the resulting
clause. During a proof, substitutions are generated for the
existential variables through unification and equality re-
placement. The substitutions for the output variables are
constrained to be terms in the target language whose func-
tion symbols correspond to the components of the software
library.

We refer to the answer term generated in the final step
of the proof process (Figure 5) as the applicative term of the
proof. We refer to the entire derivation process, including
the proof and the transformation of the applicative term, as a
derivation . The applicative term generated in proving the
specification shown in Figure 4 is shown in Figure 5.
vdist
 (findp
 (earth-naif-id,
 convert-time(utc-calendar,ephemeris-time-ts,utcin)),
 findp
 (mars-naif-id,
 convert-time(utc-calendar,ephemeris-time-ts,utcin)))

Figure 5: Applicative term for the Earth-Mars distance

problem

The functional program is translated into a target pro-
gramming language, such as Fortran for the NAIF domain,
through program transformations. One set of transforma-
tions introduces a bound variable for each complex subterm
(e.g. E for convert-time(utc-calendar,ephemeris-time-
ts,utcin)). Another set of transformations handles subrou-
tines with multiple output values. In the final stage, variable
declarations and the sequence of component calls are gener-
ated in the syntax of the target language. Recall that the

Fortran program resulting in our example is shown in Figure
2.

1.3 Domain Specific Components

The domain specific components of an Amphion appli-
cation consist of a domain theory and a component library.
An Amphion domain theory has three parts: an abstract the-
ory whose language is suitable for problem specifications, a
concrete theory that includes the target component specifi-
cations, and an implementation relation between the abstract
and concrete theories. The implementation relation is axio-
matized through abstraction maps using a method described
by Hoare [3]. The domain theory is created by acquiring
knowledge from a domain expert, developing appropriate
domain abstractions and pre/post conditions for the software
components, and then constructing axioms.

Generating an Explanation through Tracing a
Derivation

This section informally illustrates the process of gener-
ating an explanation through the example of the Earth-Mars-
Distance-Ttp program. The succeeding sections develop the
mathematics and algorithms of the formal explanation gen-
eration process. The process starts with the generated For-
tran program, considered to be the root of a derivation tree,
and traces backwards to the specification and domain the-
ory, considered to be the leaves of the derivation tree. Both
the proof, resulting in an applicative answer term, and the
trace of the program transformations, that result in an ab-
stract syntax term for the Fortran program, are part of this
derivation tree. An explanation is an equality connecting
parts of the Fortran program to constructs in the specifica-
tion and domain theory, from which it was derived. This
equality is extracted from the derivation tree. Note, how-
ever, that even though explanations are represented as
equalities, our technique is not limited to equational theo-
ries. For example, Section 0 describes explanation genera-
tion for proofs containing paramodulations. Niether of the
formulas used in a paramodulation step is required to be an
equality.

In this paper we will focus on explaining the variables
in a Fortran program, but in general all the constructs in a
generated program are connected to specification and do-
main theory axioms.

Consider the problem of connecting the Fortran vari-
able PSMARS (see Figure 2) to the specification term rep-
resenting the center of body Mars in order to generate the
comment “PSMARS is the position of Mars in rectangular
coordinates J2000 at the Time-of-Interest.” In the generated
Fortran program (Figure 2) PSMARS appears as an output
variable of a call of the Fortran subroutine ST2POS whose
input is the variable SMARS. SMARS in turn is the output
of a call of the subroutine SPKSSB whose inputs are

MARSNA, E, and J2000. By inspecting the program trans-
formation trace, it can be determined that this call to
SPKSSB was generated by the program transformations
from the subterm findp(mars-naif-id,convert-time(utc-
calendar,ephemeris-time-ts,utcin)) of the applicative term.

The remainder of the trace process proceeds backwards
through the proof. This findp(...) term is generated by the
demodulation step shown in Figure 6.
Demodulation using the axiom named
Ephemeris-object-and-time-to-position-to-findp:

(= (ephemeris-object-and-time-to-position
 (abs (naif-id-to-body-id) Bnid)
 (abs (coordinates-to-time ephemeris-time-ts) Et))
 (abs (coordinates-to-point rectangular j2000)
 (findp Bnid Et)))

on the subterm
(ephemeris-object-and-time-to-position
 (abs(naif-id-to-body-id) mars-naif-id)
 (abs (coordinates-to-time ephemeris-time-ts)
 (convert-time utc-calendar ephemeris-time-ts utcin)))

yields
(abs (coordinates-to-point rectangular j2000)
 (findp mars-naif-id
 (convert-time utc-calendar ephemeris-time-ts utcin)))

Figure 6: An example demodulation step

This step illustrates one of the complexities of the trace
process, namely, the term being traced (findp(...)) is a sub-
term of the term introduced by this demodulation. The trace
process needs to track the evolution of this subterm back-
wards through the derivation tree, where at each node it is
only a subpart of the modified part formula.

Another complexity is that while findp is a concrete
function symbol, ephemeris-object-and-time-to-position is
abstract. Hence, this is a step where the term being traced
has moved from the concrete level to the abstract level. In
general, such steps are where additional information is in-
serted into a derivation, such as a quantity’s units and rep-
resentation. In this example, the demodulation step provides
the units and representation for PSMARS, i.e., rectangular
coordinates in the J2000 frame. This type of information is
inserted into the explanation.

Continuing to trace backwards through the derivation
tree, the next step is the demodulation shown in Figure 7.
Demodulation using the axiom
Body-to-center-to-ephemeris-object-and-time-to-position:

(= (body-to-center
 (body-id-and-time-to-body B T))
 (ephemeris-object-and–time-to-position B T))

on the subterm
(body-to-center

 (body-id-and-time-to-body (abs (naif-id-to-body-id)
 mars-naif-id)
 (abs (coordinates-to-time ephemeris-time-ts)
 (convert-time utc-calendar ephemeris-time-ts,utcin))

yields
(ephemeris-object-and-time-to-position
 (abs(naif-id-to-body-id) mars-naif-id)
 (abs (coordinates-to-time ephemeris-time-ts)
 (convert-time utc-calendar ephemeris-time-ts utcin)))

Figure 7: Another example demodulation step

Tracing back from this term through several more de-
modulations, we arrive at the leaves of the derivation tree-
namely, the subterm(BODY-TO-CENTER Body-Mars) in
the specification . This subterm is equated to the specifica-
tion variable the-center-of-Body-Mars. (see Figure 4).
Hence, the trace back to the specification is complete.

Mathematical Framework

Derivations consist of annotated proof trees and an-
notated transformation trees. Neither the SNARK theorem
prover nor the transformation system record sufficient in-
formation to enable explanations to be extracted from deri-
vations. The first step in implementing the tracing algo-
rithms described in the next section was to augment both
these Amphion subsystems to provide the needed annota-
tions. These annotations explicitly record those parts of a
formula changed in each step in a proof or program trans-
formation. Furthermore, the generated Fortran programs are
represented as abstract syntax terms. This provides a uni-
form representation for the nodes of a derivation from the
specification to the generated program. Derivations consist
of nodes which are formulas and arcs between nodes which
correspond to proof steps or program transformations. Be-
cause transformations are treated as just another type of
derivation step, we make no distinction in what follows
between the proof process and the transformation process.

A subformula is specified by a path description from
the root of the formula to the root of the subformula. A path
description is a sequence of argument position selectors,
e.g., using notation similar to [8], the path [2, 1] specifies
subterm b of the term f(a,g(b,c)). The expression paths(t) is
the set of valid paths in the term t. The subterm of a term t
selected by a valid path p of t is written t@p. The concate-
nation of two paths p and q is denoted by p+q. For paths p
and q, we write p<q if p is a proper prefix of q. In this case,
t@q is a subterm of t@p.

In generating explanations, it is important to avoid get-
ting “mixed up” when the same term occurring in different
places has different derivations. To avoid this, we extend
the notion of a path to that of a location. A location is a pair
<n,p>, where n is a formula number and p is a valid path in
that formula. Every formula in a derivation is assigned a

unique number. If the same formula is used more than once
in a derivation, the different uses have different numbers. If
l is <n,p>, then @l is defined to be formulan@p. We label
each nonlogical symbol in a formula by its location and we
label each variable with its formula number. For example,

formulan=(Pn,[0] (fn,[1,0] xn) (gn,[2,0] (fn,[2,1,0] yn xn))).
Formally, a derivation is a directed acyclic graph whose

nodes are derivation steps and whose arcs encode the “de-
rived from” relation. The root of a derivation contains the
final formula and answer term resulting from a derivation,
and the leaves contain the specification formula and axioms
of the domain theory. Each derivation step is a triple
<F,T,A>, where A is an inference rule application, and F
and T are the resulting formula and answer term, respec-
tively. Each application of an inference rule specifies: the
inference rule that was applied (one of demodulation, para-
modulation, or resolution); the input formulae F1, ..,Fn; and
locations of the subterms to which the rule applied. In steps
of the derivation, subterms of formulas will be substituted
into the answer term T.

In general, an explanation of a Fortran program in
terms of the abstract specification and domain theory is a
collection of explained connections between the variables,
functions and subroutines in the Fortran program and the
objects, relations and functions in the problem specification
or domain theory. For example, the purpose of the Fortran
variable PSMARS in Figure 2 is explained by identifying its
relationship to the specification object representing the
center of body MARS (see Figure 4). We represent the col-
lection of explained connections as a set of equalities be-
tween locations (paths in formulas) in a derivation. Then an
explanation of the relationship between a Fortran variable
and a specification object is an equality consequence of the
specification formula union the explanation equalities of the
derivation.

Formally, we can associate with each step a set of ex-
planation equalities which are equality assertions of the
form t1=t2, where t1 is Φ@p1 and t2 is Ψ@p2, or of the form
x=t which comes from a substitution. Each equality is a
consequence of the semantics of the inference rule and of
the input formulae. In our implementation, the explanation
equalities of a step are represented implicitly by the func-
tions map-back and pass-through described in Section 0.
The explanations are a theory of only the connections that
were created by the derivation, not of all possible equality
relations that might be inferred from the input specification
and the domain theory.

A goal explanation equality for a program variable is
an equality of the form:

(= <a possibly empty composition of selectors applied
 to an abstract variable>
 <the abstraction of the concrete variable to be
 explained>)
e.g.,
(= the-center-of-Body-Mars
 (abs(coordinates-to-point rectangular j2000)

 PSMARS)),
As an example of computing a goal explanation equal-

ity, consider the following explanation equalities of the
PSMARS derivation (in which we have omitted the location
labels, but keep in mind that these are really equalities be-
tween subtrees):
(= PSMARS
 (findp mars-naif-id
 (convert-time utc-calendar ephemeris-time-ts utcin)))

(= (abs (coordinates-to-point rectangular j2000)
 (findp mars-naif-id
 (convert-time utc-calendar ephemeris-time-ts
 utcin)))
 (ephemeris-object-and-time-to-position
 (abs (naif-id-to-body-id) mars-naif-id)
 (abs (coordinates-to-time ephemeris-time-ts)
 (convert-time utc-calendar ephemeris-time-ts
 utcin))))
{This explanation equality comes from the demodulation
step in Figure 6.}

(= (ephemeris-object-and-time-to-position
 (abs (naif-id-to-body-id) mars-naif-id)
 (abs (coordinates-to-time ephemeris-time-ts)
 (convert-time utc-calendar ephemeris-time-ts
 utcin)))
 (body-to-center
 (body-id-and-time-to-body
 (abs (naif-id-to-body-id) mars-naif-id)
 (abs (coordinates-to-time ephemeris-time-ts)
 (convert-time utc-calendar ephemeris-time-ts
 utcin)))))
{This comes from the demodulation step in Figure 7.}
Additionally, the following equalities are a consequence of
the specification (Figure 4):
(= (body-id-and-time-to-body
 (abs (naif-id-to-body-id) mars-naif-id)
 (abs (coordinates-to-time ephemeris-time-ts)
 (convert-time utc-calendar ephemeris-time-ts
 utcin)))
 Body-Mars)

(= the-center-of-Body-Mars (body-to-center Body-Mars))
The derived goal explanation equality :
(= the-center-of-Body-Mars
 (abs (coordinates-to-point rectangular j2000) PSMARS))

is an equality consequence of this set of equalities.
Standard methods for reasoning about sets of ground
equalities can be used to generate this consequence. For
instance, congruence closure can finitely represent the pos-
sibly infinite set of consequences of a set of ground equali-
ties. Given this goal explanation equality, the comment ex-
plaining PSMARS is generated directly through template
instantiation.

We now formalize the definition of a demodulation
step that uses the equality s=t to rewrite the subterm s’ of a
formula Φ specified by the path p (i.e. s’=Φ@p). Let σ be a
substitution such that s’=sσ. The result of the demodulation
step demod(Φ ,p,s=t), is a formula Ψ. The explanation
equalities of this application of demodulation are as follows.
Because s=t, substitution of tσ for s’ does not change the
denotation of any subterm of Φ that is not a subterm of s’.
More formally, for any q∈ paths(Φ), if ¬(p<q) then
Φ@q=Ψ@q. Explanation equalities between subterms of
Φ @ p and Ψ@ p are specified by the substitutions
mgu(s,Φ@p) and mgu(t,Ψ@p). Here mgu is the most gen-
eral unifier of two terms ignoring the symbol labels. Those
labels are, however, kept in the resulting unifier.

This approach generalizes to all of the inference rules in
our system. As another example, the explanation equalities
of a paramodulation step are as follows: Let Γ be an axiom
of the form (s=t ∨ Q), where Q is a disjunction of literals.
Let paramodulate(Φ,p,Γ) be Ψ, the result of paramodulating
Γ into Φ[s’] at p, where s’= Φ@p and σ=mgu(s,s’). The
resulting formula Ψ is a renaming of Φ[t] σ ∨ Qσ. The ex-
planation equalities are σ , σΦ , and σ Q, where σ Φ=
mgu(Ψ@[1]+p,Φ@p) and σQ=mgu(Ψ@[2],Q).

The following extract from the derivation of the Fortran
program in Figure 2 illustrates the explanation equalities of
a paramodulation step:
Paramodulating
Ephemeris-object-and-time-to-position-to-findp
into
Φ= [(≠ (two-points-to-distance
 p(ephemeris-object-and-time-to-position
 (abs(naif-id-to-body-id) p’earth-naif-id)
 (abs(coordinates-to-time X)
 p’’ (convert-time utc-calendar X utcin)))
 (ephemeris-object-and-time-to-position
 (abs (naif-id-to-body-id) mars-naif-id)
 (abs (coordinates-to-time X)
 (convert-time utc-calendar X utcin))))
 (abs (kilometers-to-distance) Y))]
resulting in
Ψ=[(≠ (two-points-to-distance
 p(abs(coordinates-to-point rectangular j2000)
 (findp q’earth-naif-id
 q’’ (convert-time utc-calendar ephemeris-time-ts
 utcin))
 (ephemeris-object-and-time-to-position
 (abs (naif-id-to-body-id) mars-naif-id)
 (abs (coordinates-to-time q’’’ ephemeris-time-ts)
 (convert-time utc-calendar ephemeris-time-ts
 utcin))))
 (abs (kilometers-to-distance) Y))]

Γ=[(= (ephemeris-object-and-time-to-position
 (abs (naif-id-to-body-id) Bnid)

 (abs (coordinates-to-time rephemeris-time-ts) Et))
 (abs (coordinates-to-point rectangular j2000)
 (findp Bnid Et)))]

Ψ@p=Φ@p
Ψ@q’=Φ@p’
Ψ@q’’=Φ@p’’
Ψ@q’’’= Γ@r

Figure 8: An example paramodulation step

The explanation equalities of the other inference rules
in our derivation system, namely resolution and transforma-
tion, are defined similarly.

The Explanation Tool

Rather than computing explanations by explicitly com-
puting the consequences of all the explanation equalities of
a derivation, our implemented algorithm uses a more fo-
cused approach that traces back through a derivation from a
term of interest in the abstract syntax tree of the Fortran
program and assembles a (usually small) subset of the ex-
planation equalities in the derivation. It uses congruence
closure to compute the goal explanation equality from this
focused subset. Pseudo-code for the algorithm is now pre-
sented.
Procedure generate-traces(program, derivation)
 For each variable in program do
 loc ← last location of variable in
 answer-term(root(derivation))
 trace ← compute-trace(derivation, loc, {})
 traces ←traces ∪ trace
 End
 return(traces)
End generate-traces

Procedure compute-trace
 (derivation, loc, explanation)
 If contains-goal-equality(explanation)
 then return(goal-equality(explanation))
 step←root(derivation)
 If location-affected-by-step?(loc, step)
 then
 starting-loc, derivation, exp-eqs←
 map-back(loc, step, derivation)
 explanation←
 congruence-closure(explanation ∪ exp-eqs)
 Else
 starting-loc, derivation←
 pass-through(loc, step, derivation)
 Endif
 Return(Compute-trace
 (derivation, starting-loc, explanation))
 End
End compute-trace

Generate-traces finds the location of the last occur-
rence of each Fortran variable in the abstract syntax tree
generated in the last step of the derivation. It calls com-
pute-trace with the location of each program variable.
Compute-trace takes a derivation, a location and the set of
explanation equalities assembled so far (starts out empty)
and maps the location back through the derivation structure,
picking up explanation equalities. As it assembles explana-
tion equalities, it incrementally computes the congruence
closure of those equalities and, hence, represents the equal-
ity consequences. It continues this mapping process until a
goal explanation equality is derived for the Fortran variable.
The function generate-comment (not shown here) mas-
sages the goal explanation equality into a human readable
comment through template instantiation.

Loc is the location of interest described as a path into
the formula in a derivation step. Starting-loc is the location
of interest, similarly described, in the previous formula.
This is the location from which loc is derived. The function
location-affected-by-step? determines whether or not a
given location is affected by a step by checking whether the
location of interest is contained in an affected subformula of
the step. If it is not, the map back to the location of interest
in the previous formula is the identity. For example, in a
demodulation step, if the location of interest (loc) is not in
the subformula that is the result of the demodulation, then
the subformula of interest is the same location in the previ-
ous formula and is unchanged by the step. This identity
connection is implemented by pass-through which returns
loc and a partial derivation whose last step is the previous
formula. Identity connections are not included in explana-
tion traces, so pass-through does not return any explana-
tion.

If the location of interest is affected by a step, the func-
tion map-back is called to identify the location of interest in
the previous formula and to assemble the relevant explana-
tion equalities from the derivation step (node). This function
returns the new location of interest and the assembled ex-
planation equalities.

Related and Future work

The technical approach described in this paper is most
closely related to the literature on origin tracking in the re-
write community [8]. Origin tracking relates variables and
subexpressions in a final program to the initial program by

tracking the evolution of the abstract syntax tree under re-
writing. Our framework based on equalities handles the full
range of deductive synthesis rules, including paramodula-
tion and resolution, not just rewriting. Because of the more
general framework of deductive synthesis, we also need to
allow explanations to terminate in portions of the domain
theory, and not just the goal clause.

The mechanism described in this paper for providing
explanations of variables in synthesized programs can also
be used for several other purposes including: providing ex-
planations of function and subroutine invocations in the
generated program, providing explanations of fragments of
intermediate steps in deductive synthesis derivations, and
inserting assertions of expected program behavior into gen-
erated code. This latter capability will be used in future
work to explore the use of formal explanations to provide
feedback loops from generated program execution to speci-
fication revision. The explanations will be extended to pro-
vide descriptions of expected program behavior at interme-
diate points as related back to the specification. Discrepan-
cies between expected and actual program behavior will be
used to modify specifications, either in an advisory or auto-
mated capacity.

References

[1] Y. Bertot “Occurrences in Debugger Specifications”, Pro-
ceedings of the ACM Conference on Programming Lan-
guage Design and Implementation, pp. 327 - 337, 1991.

[2] Felty, A., and Miller, D. “Proof Explanation and Revision”,
University of Pennsylvania Technical Report MS-CIS-88-
17, 1987.

[3] Hoare, C.A.R., “Proof of Correctness of Data Representa-
tions,” Acta Informatica, pp. 271-281, 1973.

[4]Manna, Z. and Waldinger, R., “Fundamentals of Deductive
Program Synthesis,” IEEE Transactions on Software Engi-
neering,(18) 8, pp. 674-704, 1992.

[5] M. Lowry, A. Philpot, T. Pressburger, and I. Underwood,
“A Formal Approach to Domain-Oriented Software Design
Environments,” Proceedings of the Ninth Knowledge-Based
Software Engineering Conference, 1994.

[6] M. Lowry and J. Van Baalen, “META-Amphion: Synthesis
of Efficient Domain-Specific Program Synthesis Systems”,
Automated Software Engineering, vol 4, pp. 199-241, 1997.

[7] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I.
Underwood, “Deductive Composition of Astronomical
Software from Subroutine Libraries,” CADE-12, 1994.

[8] van Deursen, A., Klint, P. and Tip, F., “Origin Tracking,”
Journal of Symbolic Computation 15:523-545, 1993.

